

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 1 / 19

_

Table of Contents

18MAT11 : Calculus and Linear Algebra	2
A. COURSE INFORMATION	
1. Course Overview	2
2. Course Content	
3. Course Material	
4. Course Prerequisites	
B. OBE PARAMETERS	_
1. Course Outcomes	
2. Course Applications	_
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	5
1. Course Coverage	
Course Coverage Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	_
Module - 1	
Module - 2	
E1. CIA EXAM – 1	,
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module - 5	
Module - 4	
E2. CIA EXAM – 2	13
a. Model Question Paper - 2	
b. Assignment – 2	14
D3. TEACHING PLAN – 3	15
Module - 3	15
E3. CIA EXAM - 3	16
a. Model Question Paper - 3	16
b. Assignment – 3	17
F. EXAM PREPARATION	
1. University Model Question Paper	18
2. SEE Important Questions	10

Note: Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page
Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 2 / 19

18MAT11 : Calculus and Linear Algebra

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	All Branches
Year / Semester :	2019/ l	Academic Year:	2019-20
Course Title:	Calculus and Linear Algebra	Course Code:	18MAT11
Credit / L-T-P:	4/ 3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Mrs.Smitha N	Sign	Dt:03-08-2019
Checked By:	Dr.Puttaraju C	Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Angle problems on polar form, pedal form, radius of curvature,	10	Bentness of	L3
	evolutes and involutes.		the curve.	
2	Taylor's and Maclaurin's series, Indeterminate forms	5	Infinite series	L3
2	Partial Differentiation, Maxima and minima and its applications.	5	Partial	L3
	Jacobians.		Differentiation	
3	Evaluation of double and triple integrals and its	10	Area and	L4
	applications.Beta and Gamma functions.		volume	
4	Methods to solve ODE and its applications.	10	ODE	L3
	Rank of matrices and different methods to solve system of		Matrix Theory	L3
	equations, Eigen values and eigen vectors of square matrix and			
	its diagonalizaion.			

3. Course Material

-		
Mod	Details	Available
ule		
1	Text books:	
	1.B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, 43 rd	In Dept
	Ed.,2015.	
	2.E.Kreyszig: Advanced Engineering Mathematics,John Wiley & Sons, 10 th Ed.	In Dept
	(Reprint),2016.	
2	Reference books:	
	1. C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th	Not Available
	Edition, 2.McGraw-Hill Book Co.,New york,1995.	
	2.James Stewart:"Calculus- Early Transcendentals", Cengage Learning India	Not Available
	Private Ltd.,2017.	
	3.B.V.Ramana:"Higher Engineering Mathematics" 11 th Edition Tata McGraw-	In Dept
	Hill,2010.	
	4.Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford	Not Available
	UniversityPress, 3 rd Reprint, 2016.	
	5.Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for	Not Available
	Semesterl and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015.	

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level

BS

Prepared by	Checked by	ام در ده بر ما ۸
Prepared by	UNECKED DV	Approved

24.76	SKIT	Teaching Process	Rev No.: 1.0
S S S	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
A CHINOLOGY *	Title:	Course Plan	Page: 3 / 19

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach. Hours	Concept	Instr Method	Assessmen t Method	Blooms' Level
CO1	Apply calculus to determine the bentness of the curve and solve the problems.	10	Bentness of the curve.		Assignment and Slip Test	L3 Apply
CO2	Apply Taylor;s method using function of the one variable to get an infinite series.		Infinite series	Lecture	Assignment and Slip Test	L3 Apply
CO3	Apply partial differentiation to calculate rate of change of multivariate functions and solve problems related to composite functions and Jacobians.	J	Partial Differentiatio n	Lecture	Assignment and Slip Test	L3 Apply
CO4	Analyze the concept of change of order of integration using multiple integrals to compute area and volume		Area and volume	Lecture	Assignment and Slip Test	L4 Analyze
CO5	Apply the first order linear/ non-linear differential equation analytically using standard methods.		Ordinary Differential Equation.	Lecture	Assignment and Slip Test	L3 Apply
CO6	Apply the elementary matrix theory to solve the system of linear equations and compute eigen values and eigen vectors for diagonalization.		Matrix Theory	Lecture	Assignment and Slip Test	L3 Apply
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
		CO	Level
1	Polar curves are used to determine actual illumination of a surface.	CO1	L3
2	Taylor's series is used as a tool in computational science and approximation.	CO2	L3
3	Partial differentiation is used to study the nature of heat-wave equations and its	CO3	L3
	applications in thermodynamics.		
4	Multiple integrals are used to compute area and volume.	CO4	L4
5	Solve first order linear/ non-linear differential equation analytically using standard	CO5	L3
	methods.		
6	Matrix theory is used to solve the system of linear equations and compute eigen	CO6	L3
	values and eigen vectors required for matrix diagonalization process.		

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes		Program Outcomes											
#	COs	PO ₁	PO ₂	PO3	PO ₄	PO5	РО	PO7	РО	PO9	PO ₁	PO ₁	PO ₁	Level
							6		8		0	1	2	
CO1	Apply calculus to determine the bentness of the curve and solve		√	√										L3

BS

TITUTE
The state of the s
(\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(\$ (\partial \text{2}
18/18
* BANCAL ORE *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 4 / 19

Copyright ©2017. CF	AAS. All rights reserved.				 	 		 	
	the problems.								
CO2	Apply Taylor;s method using function of the one variable to get an infinite series.		√						L3
CO3	Apply partial differentiation to calculate rate of change of multivariate functions and solve problems related to composite functions and Jacobians.		√						L3
CO4	Analyze the concept of change of order of integration using multiple integrals to compute area and volume		√						L4
CO ₅	Apply the first order linear/ non- linear differential equation analytically using standard methods.	√	√						L3
CO6	Apply the elementary matrix theory to solve the system of linear equations and compute eigen values and eigen vectors for diagonalization.		√	√					L3
Note: Ment	ion the mapping strength as 1, 2, ϵ	or 3					•		·

4. Mapping Justification

Мар	Mapping Justification				
СО	РО	-	-		
CO1	PO1	Apply the knowledge of bentness of curve.	L3		
CO1	PO2	Analyze complex engineering problem using radius of curve.	L4		
CO1	PO3	Apply the knowledge gained to design the railway tracks.	L3		
CO2	PO1	Apply the knowledge of Taylor's series.	L3		
CO2	PO2	It is used in power flow analysis of electrical power systems.	L4		
CO3	PO1	Apply the knowledge of partial differential equations which serves as models for physical processes.	L3		
CO3	PO2	To analyze physical processes such as mechanical vibrations, transfer phenomena.	L4		
CO4	PO1	Apply the knowledge of double and triple integrals to solve complex engineering problems.	L3		
CO4	PO2	Analyze complex engineering problems such as finding the area and volume of surfaces.	L4		
CO5	PO1	Apply the knowledge of ordinary differential equations to find the solution of complex engineering problems.	L3		
CO5	PO2	Used to analyze flow of water and its related properties in fluid mechanics.	L4		
CO6	PO1	Apply the knowledge of eigen values and vectors to solve complex engineering problems.	L3		
CO6	PO2	Eigen value analysis is used in analyzing the vibration of the car caused due to music system.	L4		
CO6	PO3	Eigen value analysis is used in designing the car stereo system.	L4		

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

BS

THISTITUTE OF A	SKIT Teaching Process					
AND CONTRACTOR OF CONTRACTOR O	Doc Code:	BS-SKIT.Ph5b1.F02			Date:03-08-2019	
BANGALORE X	Title:	Course Plan			Page: 5 / 19	
Copyright ©2017. cA	AS. All rights reserved				1	
2						

3			
4			
5			

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching No. of question in Exam				CO	Levels			
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Differential Calculus -1	10	2	-	1			2	CO1	L3
2	Differential Calculus -2	10	2	-	1			2	CO2,	L3
									CO3	
3	Integral Calculus	10	_	-	1			2	CO4	L4
4	Ordinary Differential Equations.	10	_	2	-			2	CO5	L3
5	Linear Algebra	10	_	2	1			2	CO6	L3
-	Total	50	4	4	4			10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	30	CO1,CO2,CO3	L3
CIA Exam – 2	30	CO5,CO6	L4
CIA Exam – 3	30	CO1,CO2,CO3,CO4,CO6	L4
Assignment - 1	10	CO1,CO2,CO3	L3
Assignment - 2	10	CO5,CO6	L4
Assignment - 3	10	CO1,CO2,CO3,CO4,CO6	L4
Seminar - 1	_	-	-
Seminar - 2	-	_	-
Seminar - 3	-	-	-
Other Activities - define -	-	_	_

BS

A MSTITUTE OF	SKIT	Teach	ning Process	Rev No.: 1.0
KAN DO TO THE PART OF THE PART	Doc Code:	BS-SKIT.Ph5b1.F02		Date:03-08-2019
R ANGALORE *	Title:	Course Plan		Page: 6 / 19
ا Copyright ©2017. cA	AS. All rights reserved.			
Slip test				

Final CIA Marks	40	-	-
Slip test			
copyright @2017. CAAS. Alt rights reserved.			

Note: Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Title:	Differential Calculus-1	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply calculus to determine the bentness of the curve and solve the problems.	CO1	L3
b	Course Schedule	-	-
lass No	Module Content Covered	СО	Level
1	Review of elementary differential calculus.	CO1	L3
2	Polar curves-Angle between the radius vector and tangent.	CO1	L3
3	Angle between two curves.	CO1	L3
4	Pedal equation	CO1	L3
5	Radius of curvature- Cartesian form	CO1	L3
6	Radius of curvature- Polar form	CO1	L3
7	Centre and circle of curvature.	CO1	L3
8	Applications to evolutes	CO1	L3
9	Applications to involutes	CO1	L3
10	Additional Problems.	CO1	L3
С	Application Areas	СО	Level
1	Polar curves are used to determine actual illumination of a surface.	CO1	L3
d	Review Questions	_	_
1	Find the nth derivative of e ^{ax} cos(bx+c).	CO1	L3
2	If $y = e^{m \sin^{-1} x}$ then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (m^2+n^2)y_n = 0$	CO1	<u>=</u> 3
3	Find the pedal equation of the curve r ^{m-} a ^m (cosmθ+sinmθ).	CO1	L3
4	Find the angle of intersection of the curves $r=alog\theta$, $r=\frac{a}{log\theta}$	CO1	L3
5	Show that the pairs of curves $r=a(1+cos\theta)$ & $r=b(1-cos\theta)$ intersect orthogonally.	CO1	L3
6	Find the pedal equation of the curve r=a(1+cosθ)	CO1	L3
7	Find the angle between the radius vector and the tangent vector to the curve $r=a(1-\cos\theta)$.	CO1	L3
8	Find the pedal equation of the curve $\frac{2a}{r} = \dot{c}(1-\cos\theta)$	CO1	L3
9	Show that the radius of curvature at any point ' θ ' to the curve x= a(θ +sin θ),y= a(1-cos θ) is 4acos($\frac{\theta}{2}$).	CO1	L3
10	Derive an expression for radius of curvature in case of the polar curve $r=f(\theta)$.	CO1	L3
11	Find the radius of curvature at the point 't' on the curve x= a(t+sint), y= a(1-cost).	CO1	L3
е	Experiences	-	_
1	<u>'</u>		

WSTITUTE OF	SKIT	Teaching Process	Rev No.:	1.0
WE CONTROL OF THE PROPERTY OF	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019	
BANGALORE	Title:	Course Plan	Page: 7	/ 19
Copyright ©2017.	Copyright ©2017. cAAS. All rights reserved.			
2				
3				
4				
_				

Title:	Differential Calculus-2	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply Taylor;s method using function of the one variable to get an infinite series.	CO2	L3
2	Apply partial differentiation to calculate rate of change of multivariate functions and solve problems related to composite functions and Jacobians.	CO3	L3
b	Course Schedule		
	Module Content Covered	СО	Level
11	Taylor's and Maclaurin's series expansion	CO2	Levet
12	Problems	CO2	L3
	Indeterminate forms	CO2	
13	Problem solving	CO2	L3 L3
14	Total derivatives-differentiation of composite functions	CO2	L3
15 16	Maxima and minima for a function of two variables.	CO3	L3
17	Method of Lagrange's multipliers	CO3	L3
18	Application of maxima and minima with examples.	CO3	L3
19	Jacobians	CO3	L3
20	Problems on jacobians	CO3	L3
	. To storile on jacobishe		
С	Application Areas	СО	Level
1	Taylor's series is used as a tool in computational science and approximation.	CO2	L3
2	Partial differentiation is used to study the nature of heat-wave equations and its applications in thermodynamics.	CO3	L3
d	Review Questions		_
12	Expand $tan(\frac{\pi}{4} + x)$ by using the maclaurin's series expansion up to the terms containing x^4	CO3	L1
13	Expand log(secx) by using the maclaurin's series expansion up to the terms containing x4	CO3	L3
14	Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$	CO3	L2
15	Evaluate $\lim_{x \to 0} \frac{\sin x \sin^{-1}(x)}{x^2}$	CO3	L3
16	Evaluate $\lim_{x\to 0} \left(\cos x\right)^{\frac{1}{x^2}}$	CO3	L2
17	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$ then prove that $x^2 \frac{\partial u}{\partial x} \cdot y^2 \frac{\partial u}{\partial y} \cdot z^2 \frac{\partial u}{\partial z} = 0$	CO3	L3
18	Find $J\left(\frac{u,v,w}{x,y,z}\right)$ where $u=x^2+y^2+z^2$, $v=xy+yz+zx$, $w=x+y+z$.	CO3	L2

AMSTITUTE OF	SKIT	Teaching Process	Rev No.: 1.	0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-0	8-2019
# BANGALORE *	Title:	Course Plan	Page: 8 /	19
Copyright ©2017	cAAS. All rights reserved.			
19	$u = \frac{Xy}{z}$, $v = \frac{yz}{x}$ and	d w $\dot{c} \frac{xz}{y}$ find $J\left(\frac{u,v,w}{x,y,z}\right)$	CO ₃	L3
е	Experiences		-	-
1				
2				
3				
4			CO.3	L3

E1. CIA EXAM - 1

5

a. Model Question Paper - 1

Crs	Code:	18MAT11 Sem: I Marks: 30 Time: 75	minute	es	
Cou	ırse:	Calculus and Linear Algebra			
-	-	Note: Answer any 3 questions, each carry equal marks.	Marks	СО	Level
1	а	With usual notations prove that $\tan \mathcal{D}=r\frac{d\theta}{dr}$	5	CO1	L3
	b	Find the pedal equation of the curve r ⁿ = a ⁿ cosnθ	5	CO1	L ₃
	С	Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ of the folium $x^3 + y^3 = 3axy$	5	CO1	L3
		OR			
2	а	Find the angle of intersection of the curves r=alog θ , r = $\frac{a}{log\theta}$	5	CO1	L3
	b	Find the pedal equation of the curve r ^m =a ^m (cosmθ+sinmθ)	5	CO1	L3
	С	Find the centre and circle of curvature for $xy = c^2$ at (c,c)	5	CO1	L3
3	а	Obtain the Taylor's expansion of logx about x=1 upto the term containing 4 th degree and hence obtain log(1.1).	5	CO2	L3
	b	Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$	5	CO2	L3
	С	If x= rsin θ cos ϕ , y=rsin θ sin ϕ , z=rsin θ , find $J\left(\frac{x,y,z}{r,\theta,\phi}\right)$	5	CO3	L3
		OR			
4	а	Expand log(secx) upto to sixth degree using Maclaurin's Expansion	5	CO2	L3
	b	Evaluate $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2(x)}\right)$	5	CO2	L3
	С	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	5	CO3	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions									
ode:	18MAT11	Sem:	I	Marks:	10	Time:			
Course: Calculus and Linear Algebra									
Note: Each student to answer 3 assignments. Each assignment carries equal mark.									
ı	USN		Assig	nment Desc	ription		Marks	CO	Level
1 If X= tan(logy), show that $(1+x^2)y_{n+1}+(2nx-1)y_n+n(n-1)y_{n-1}=0$					5	CO1	L3		
		Using the Ma	claurin's ser	ries <i>prove th</i>	at $\sqrt{1}$ +	·sin 2 x =1+ ×	5	CO2	L3
	se: Each	se: Calculus Each student t USN	Each student to answer 3 as USN If X= tan(logy)	ode: 18MAT11 Sem: I See: Calculus and Linear Algebra Each student to answer 3 assignments. USN Assignments Assig	ode: 18MAT11 Sem: I Marks: See: Calculus and Linear Algebra Each student to answer 3 assignments. Each assign USN Assignment Description If X= tan(logy) ,show that (1+x²)yn+1+(2n);	ode: 18MAT11 Sem: I Marks: 10 Se: Calculus and Linear Algebra Each student to answer 3 assignments. Each assignment of the company of the comp	ode: 18MAT11 Sem: I Marks: 10 Time: se: Calculus and Linear Algebra Each student to answer 3 assignments. Each assignment carries equal mark. USN Assignment Description	ode: 18MAT11 Sem: I Marks: 10 Time: se: Calculus and Linear Algebra Each student to answer 3 assignments. Each assignment carries equal mark. USN Assignment Description Marks If X= tan(logy) ,show that (1+x²)y _{n-1} +(2nx-1)y _n +n(n-1)y _{n-1} =0 5	ode: 18MAT11 Sem: I Marks: 10 Time: se: Calculus and Linear Algebra Each student to answer 3 assignments. Each assignment carries equal mark. USN Assignment Description Marks CO If X= tan(logy) ,show that (1+x²)y _{n+1} +(2nx-1)y _{n+1} (n-1)y _{n-1} =0 5 CO1

BS Prepared by

Checked by

Approved

SHILLS IN	STITUTE OF ALL
* 9RI KRIS	
10	MGALOR

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 9 / 19

Copyright ©2017. cAAS. All rights reserved. Expand $f(x)=\sin(e^x-1)$ in powers of x up to the terms containing CO2 L3 3 Find the nth derivative of $y=e^{2x}sinxcos^2x$ CO₁ 4 L3 Expand log(secx) by using the maclaurin's series expansion up 5 5 L3 to the terms containing x4 6 CO₁ Prove that with usual notations $\frac{1}{n^2} = u^2 + \lambda$ L3 5 CO₂ 7 L3 Expand $\tan(\frac{\pi}{4} + x)$ by using the maclaurin's series expansion up to the terms containing x4 Expand log(1+sinx) in powers of x by using the Maclaurin's CO2 8 L3 series expansion up to the terms containing x4 CO2 L3 Find the maclaurin's series expansion of $tan^{-1}(x)$, up to the 5 9 fifth degree term of x. Find the pedal equation of the curve $r^{m}a^{m}(cosm\theta+sinm\theta)$. CO₁ 10 L3 11 CO₁ L3 5 Find the angle of intersection of the curves $r=alog\theta$, r=Find the pedal equation of the curve rⁿ⁻aⁿcosnθ CO₁ L3 12 Show that the pairs of curves $r=a(1+cos\theta)$ &r=b(1-cos θ) CO₁ L3 13 intersect orthogonally Find the pedal equation of the curve $r=a(1+cos\theta)$ CO₁ L3 14 5 CO3 15 L3 Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x + d^x}{4}\right)^{\frac{1}{x}}$ Evaluate i) $\lim_{x \to 0} \frac{\sin x \sin^{-1}(x)}{v^2}$ 16 CO₃ L3 Evaluate: i) $\lim_{x \to \frac{\pi}{2}} (2 x t a n x - \pi s e c x)$ ii) $\lim_{x \to 0} \left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)}$ If x+ y+ z=u , y+ z=v,z=uvw show that $J\left(\frac{x,y,z}{u,v,w}\right)$ =uv. CO3 17 L3 CO3 18 L3 If $u = f\left(\frac{y - x}{xy}, \frac{z - x}{xz}\right)$ then prove that $x^2 \frac{\partial u}{\partial x} \cdot y^2 \frac{\partial u}{\partial y} \cdot z^2 \frac{\partial u}{\partial z} = 0$ CO₃ L3 19 5 CO3 20 Find $J\left(\frac{u,v,w}{x,y,z}\right)$ where $u=x^2+y^2+z^2$, v=xy+yz+zx, w=x+y+z5 L3 $\begin{aligned} &|\text{If } \mathbf{u} = \frac{xy}{z} \text{ , } \mathbf{v} = \frac{yz}{x} \text{ and } \mathbf{w} \dot{\mathbf{c}} \frac{xz}{y} \text{ find } J\left(\frac{u,v,w}{x,y,z}\right) \\ &|\text{If } \mathbf{u} = \mathbf{x}^2 - \mathbf{y}^2 \text{ , } \mathbf{v} = 2\mathbf{x}\mathbf{y} \text{, } \text{Find } J\left(\frac{u,v}{x,y}\right) \text{, ii) } \mathbf{x}^2 + \mathbf{x}\mathbf{y} + \mathbf{y}^3 = 2 \text{ , find } \frac{d\left(yx^3\right)}{dx} \end{aligned}$ CO3 L3 21 CO₃ L3 22 If u=f(x-y,y-z,z-x) prove that $u_x+u_y+u_z=0$ If $u=\log(x^3+y^3+z^3-3xyz)$, then prove that $\frac{\partial u}{\partial x}+\dot{c}\frac{\partial u}{\partial y}+\dot{c}\frac{\partial u}{\partial z}=\dot{c}$ CO₃ L3 23 5 CO3 L3 24

CTITUTE
The state of the s
(\$/\@o.x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
E (2000) 18
18 (\$ 5) (8)
* * * * * * * * * * * * * * * * * * *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 10 / 19

Copyrigh	it ©2017. cAAS. All rights	reserved.			
25		dy du	5	CO3	LЗ
-5		If u=xlog(xy) where $x^3+y^3+3xy=1$, find $\frac{dy}{dx}$ and hence find $\frac{du}{dx}$	9	5	_5
		dx dx			
26		π	5	CO2	lα
-0		Using the Taylor's theorem, expand $e^x \cos y$ about (1, $\frac{\pi}{4}$) up to	J	002	_5
		4 sip to			
		second degree terms			

D2. TEACHING PLAN - 2

Title:	Linear Algebra	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
_	The student should be able to:	_	Level
1	Apply the elementary matrix theory to solve the system of linear equations and compute eigen values and eigen vectors for diagonalization.	CO3	L3
b	Course Schedule		
Class N	Module Content Covered	СО	Level
1	Rank of matrix by echelon form	CO3	L3
2	Problems on finding rank of matrices.	CO3	L3
3	Solution of system of linear equations- Gauss elimination method	CO3	L3
4	Gauss Jordan Method problems.	CO3	L3
5	Approximate solution by Gauss Seidal Method	CO3	L3
6	Additional problems on system of equations.	CO3	L3
7	Eigen values and vectors problems.	CO3	L3
8	Rayleigh's power method problems.	CO3	L3
9	Problems on Diagonalization of square matrix.	CO3	L3
10	Additional problems.	CO3	L3
С	Application Areas	СО	Level
1	Matrix theory is used to solve the system of linear equations and compute eigen values and eigen vectors required for matrix diagonalization process.	CO6	L3
d	Review Questions	-	-
1	Use elementary row transformations , find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 - 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 - 2 & 0 \end{bmatrix}$	CO6	L3
2	Applying Gauss Jordan method solve 2x+3y-z=5, 4x+4y-3z=3, 2x-3y+2z=2.	CO6	L3
3	Apply Gauss-elimination method to solve the following equations: 2x-y+3z=1; -3x+4y-5z=0; x+3y-6z=0.	CO6	L3
4	Apply Gauss-elimination method to solve the following equations: x-2y+3z=2; 3x-y+4z=4; 2x+y-2z=5	CO6	L3
5	Reduce the matrix, A $\begin{bmatrix} 11 & -4 & 7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ into a daiagonal matrix	CO6	L3
6	Solve using the Gauss Jordan method. x+y+z=9; x-2y+3z=8; 2x+y-z=3	CO6	L3
7	Find the eigen values and eigen vector corresponding to the largest eigen value of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	CO6	L3

P. INSTITUTE OF	SKIT	Teaching Process	Rev No.: 1.0
RI KRISHIN	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
& BANGALORE *	Title:	Course Plan	Page: 11 / 19

Copyright ©20	or, cAAS, All rights reserved.		J
8	If $P = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$ is a modal matrix of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ and the inverse of P is $P^{-1} = \begin{bmatrix} -3 & 0 & 3 \\ 2 & -2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, then transform A into diagonal form	CO6	L3
	and hence find A^4	000	
9	Show that the transformation $y_1=2x_1-2x_2-x_3$, $y_2=-4x_1+5x_2+3x_3$, $y_3=x_1-x_2-x_3$ is regular and find the inverse transformation	CO6	L3
10	Diagonalize the matrix, A= $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	CO6	L3
11	Find all the eigen values for the matrix, $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$	CO6	L3
е	Experiences	-	-
1	·		
2			
3			
4			
5			

a	Course Outcomes The student should be able to:	_	Blooms
-	The student should be able to:	-	Level
1	Apply the first order linear/ non-linear differential equation analytically using standard methods.	CO3	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Problems on exact and reducible to exact equations.	CO3	L3
2	Additional problems.	CO3	L3
3	Bernoulli's equation problems.	CO3	L3
4	Applications of ODE's – Problems on orthogonal trajectories.	CO4	L4
5	Problems on Newton's law of cooling	CO4	L4
6	Problems on L-R circuits	CO4	L4
7	Additional problems on applications.	CO3	L3
8	Non linear differential equations- Solving problems on solvable on p.	CO3	L3
9	Problems on solvable for p	CO3	L3
10	Clairaut's equations and problems.	CO3	L3
С	Application Areas	СО	Level
1	Solve first order linear/ non-linear differential equation analytically using standard methods.	CO ₄	L4
d	Review Questions	-	_
1	Solve: $(x^2-4xy-2y^2) dx+(y^2-4xy-2x^2) dy=0$	CO3	L3

PHSTITUTE OF I	SKIT	Teaching Process	Rev No.: 1.	.0
AND CONTRACTOR OF THE PROPERTY	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-0	8-2019
TO ANGAL ORE *	Title:	Course Plan	Page: 12 /	19
O : III @	110 111 111			
Copyright ©2017.	CAAS. All rights reserved.			
2	C. 1	dy_{\perp} ;	CO3	L3

0 1110			
2	Solve: $(x+2y^3)\frac{dy}{dx} = \dot{\iota}y$	CO3	L3
3	Find the orthogonal trajectories of the family of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$	CO3	L3
	('A' being the parameter).	000	
4	Solve: $(x^2+y^3+6x)dx+y^2xdy=0$.	CO3	L3
5	Find the orthogonal trajectories of $r^n sinn\theta = a^n$, with a parameter and solve	CO3	L3
6	Solve: $(y^3-3x^2y)dx-(x^3-3xy^2)dy=0$.	CO3	L3
7	Find the orthogonal trajectories of the cardiods $r=a(1-\cos\theta)$, using the differential equation method	CO3	L3
8	Solve: $(1-x^2)\frac{dy}{dx} - ixy=1$	CO3	L3
9	Define orthogonal trajectories. Find the orthogonal trajectories of a system of co-axial circles $x^2 + y^2 + 2\lambda y + c = 2$, where λ is the parameter	CO3	L3
10	Solve: $\sqrt{d}\sqrt{\sin^2(\frac{X}{2})}$ ($\sqrt{d}\sqrt{d}\sqrt{d}$) i	CO3	L3
11	Solve: $\frac{dy}{dx} + x\sin 2y = x^3 \cos^2 y$	CO3	L3
	Evnorioneos		
<u>e</u>	Experiences	-	-
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs			5 minute	es				
Cou	ırse:	Calculus and linear algebra						
-	-	Note: Answer any 2 question	ns, each carry equ	al marks.		Marks	CO	Level
1	a		$2 \ 3 \ -1 - 1$			5	CO6	L3
		Final the Double of a martinic A	1 - 1 - 2 - 4					
		Find the Rank of a matrix A=	3 1 3 -2					
			$6\ 3\ 0\ -7$					
	b	Solve the following system	of equations by Ga	auss-Jordan r	nethod:	5	CO6	L3
		x +y+z =9						
		x-2y+3z =8						
		2X+Y-Z =3.						
	С	Find the largest eigen valu 201	e and the corresp	oonding eige	n vector of th	ne 5	CO6	L3
		matrix A= 020 .						
		102						
		OR						
2	a	Find the values of a for whi	ch the system :			5	CO6	L3
		X+Y+Z =1						
		x+2y+4z =a						
		x+4y+10z =a² has a s						
	b	Solve the system of equation	ons by Gauss-Seide	el method:		5	CO6	L3
		10X + Y + Z = 12						
		X+10Y+Z =12						

(2)	MSTITUTE OF	SKIT	Teaching Process	Rev	No.: 1.0	
KRISHM		Doc Code:	BS-SKIT.Ph5b1.F02	Date	:03-08-	2019
188	SANGALORE*	Title:	Course Plan	Page	e: 13 / 19	9
Copyri	ight ©2017	. cAAS. All rights reserved.				
		X+Y+10Z	=12.			
	С	Reduce the ma	trix A= $\begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$ to the diagonal form .	5	CO6	L3
3	a	Solve: (4xy+3y²-:	x)dx + x(x+2y)dy = 0.	5	CO5	L3
	b	Solve: $\frac{dy}{dx}$ +	$\frac{y}{x} = y^2 x$.	5	CO5	L3
	С	Find the Orthog	onal Trajectories of the family of parabolas y²=4ax.	5	CO5	L3
			OR			
4		Solve: y(2xy+1)d:		5	CO5	L3
	b	Solve: xy(1+xy²)	$\frac{dy}{dx}$ =1.	5	CO5	L3
	С	Find the Orthog r ⁿ = a ⁿ cosn 0 .	onal Trajectories of the family of curves	5	CO5	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	ode: 18MAT11	Sem:	I	Marks:	10		Time:			
Cours		and Linear		·						
	Each student	o answer 3					es equal mar			
SNo	USN		Ass	ignment Des	criptio	n		Marks	СО	Level
1		Find all the	eigen valu	es for the ma	trix, A=	7 -2 0		5	CO6	L3
2		Reduce the		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		a daia	ngonal matrix	5	CO6	L3
3		Obtain the r	eduction f	formula for \int	sin ⁿ xa	lx		5	CO3	L3
4				$A = \begin{bmatrix} 8 & -6 \\ -6 & 7 \\ 2 & -4 \end{bmatrix}$	-4			5	CO6	L3
5		Evaluate \int_{0}^{2}	$\frac{x^4}{\sqrt{4-x^2}} dx$	×				5	CO3	
6			$y_3 = x_1 - x_2 - $	ormation ${oldsymbol y}_1$ = ${oldsymbol x}_3$ is regula	_			7	CO6	L3
7		equations:		tion method 4; 2x+y-2z=5	to so	olve	the following	g 5	CO6	L3
8				and eigen ve	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	3	oonding to th	e 5	CO6	L3
9		If $P = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$		is a modal ı	matrix	of th	e matrix A	5	CO6	L3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 14 / 19

Copyright ©2017. cAAS. All rights reserved. 1 1 3 $\begin{bmatrix} 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ and the inverse of P is $P^{-1} = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, then transform A into diagonal form and hence find A^4 Derive then reduction formula for $\int_{1}^{\frac{\pi}{2}} \sin^{n} x dx$ CO3 L3 10 Solve: $(x^2-4xy-2y^2) dx+(y^2-4xy-2x^2) dy=0$ CO3 L3 11 5 12 Solve: $(x+2y^3)\frac{dy}{dx} = \dot{\iota}y$ CO3 L3 5 Find the orthogonal trajectories of the family of the curve CO₃ 13 L3 $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ ('\lambda' being the parameter). CO3 Solve: $(x^2 + y^3 + 6x) dx + y^2 x dy = 0.$ L3 14 5 Find the orthogonal trajectories of $r^n sinn\theta = a^n$, with a CO3 L3 15 5 parameter and solve 16 Solve: $(y^3-3x^2y)dx-(x^3-3xy^2)dy=0$. CO3 L3 5 Find the orthogonal trajectories of the cardiods $r=a(1-\cos\theta)$, CO3 L3 17 5 using the differential equation method CO3 18 Solve: $(1-x^2)\frac{dy}{dx} - xy = 1$ L3 5 Define orthogonal trajectories. Find the orthogonal CO₃ L3 19 5 trajectories of a system of co-axial circles $\chi^2 + \gamma^2$ +2 λ y+c=2, where λ is the parameter 20 CO₃ L3 Solve: $ydy+sin^2(\frac{x}{y}\dot{c}(xdy-ydx)\dot{c}0$ Solve: $\frac{dy}{dx}+xsin2y=x^3cos^2y$ 5 CO₃ 21 L3 5 Test for consistency and solve the system of equations CO6 L3 22 X+4+3Z=0, X-y+Z=0, 2X-y+3Z=0 CO6 Applying Gauss Jordan method solve 2x+3y-z=5, 4x+4y-3z=3, L3 23 5 2x-3y+2z=2 Use elementary row transformations, find the rank of the CO6 24 L3 $0 \quad 1 \quad -3-1$ 1 0 1 1 3 1 0 2 $1 \ 1-2 \ 0$ Solve using the Gauss Jordan method. CO6 L3 25 5 X+y+z=9; x-2y+3z=8; 2x+y-z=3Apply Gauss-elimination method to solve the following CO6 L3 26 equations: 2x-y+3z=1; -3x+4y-5z=0; x+3y-6z=0 CO6 Applying Gauss Jordan method solve the L3 27 system: 5 2X+5y+7Z=52; 2X+y-Z=0; X+y+Z=9 28 Solve the equations CO6 L3 5 (1). X+2y+3z=0; 3X+4y+4z=0;7X+10y+12z=0(2). 4X+2Y+Z+3W=0; 6X+3Y+4Z+7W=0; 2X+Y+W=0

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 15 / 19

Copyright ©2017. cAAS. All rights reserved. D3. TEACHING PLAN - 3

Title:	Integral Calculus	Appr Time:	10 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze the concept of change of order of integration using multiple integrals to compute area and volume	CO3	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Review of elementary integral calculus.	CO3	L3
2	Evaluation of double integrals	CO3	L3
3	Problems on double integrals	CO3	L3
4	Evaluation of triple integrals	CO3	L3
5	Problems on triple integrals	CO3	L3
6	Change of order of integration	CO3	L3
7	Changing into polar coordinates.	CO3	L3
8	Problems on finding area and volume.	CO3	L3
9	Relation between beta and gamma functions and problems.	CO3	L3
10	Problems on beta gamma functions.	CO3	L3
С	Application Areas	-	Level
1	Multiple integrals are used to compute area and volume.	CO3	L3
d	Review Questions	-	_
1	Find the surface generated by revolving the cycloid $x=a(\theta-\cos\theta),y=a(1-\cos\theta)$ about its base, (consider one arc in the 1st quadrant)	CO3	L3
2	Find the length of the arc of the cycloid x=a(t-sint), y=a(1-cost)	CO3	L3
3	Obtain the reduction formula for $\int \sin^n x dx$	CO3	L3
4	Find the area of the surface formed by the revolution of y^2 =4ax about its axis, by the arc from the vertex to one end of the latus rectum	CO3	L3
5	Evaluate $\int_{0}^{2} \frac{x^4}{\sqrt{4-x^2}} dx$	CO3	L3
6	Find the area of the loop of the curve $a^2 y^2 = \chi^2 \dot{\iota}$	CO3	L3
7	Find surface area of the solid generated by revolution of $r^2 = a^2 \cos(2\theta)$ about the line $\theta \dot{c} \frac{\pi}{2}$	CO3	L3
8	Find the length of the arch of the cycloid x=a(t-sint), y=a(1-cost)	CO ₃	1.0
9	Find the tength of the arch of the cycloid x=a(t-sint), y=a(t-cost) Find the the volume of the solid generated by revolving the cycloid	CO3	L3 L3
9	$x=a(\theta-\sin\theta),y=a(1-\cos\theta)$ about its base	CO3	L3
10	$\frac{\pi}{2}$	CO3	L3
	Derive then reduction formula for $\int_{0}^{2} \sin^{n} x dx$		
е	Experiences	-	-
1			
2			
3			
4			
5			

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 16 / 19

E3. CIA EXAM – 3

a. Model Question Paper - 3

		18MAT11 Sem: I Marks: 50 Time: 90	o minut	.es	
	ırse:	Calculus and Linear Algebra			
-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	СО	Level
L	а	Find the angle between two curves $r=\cos\theta$ and $r=1-\cos\theta$.	6	CO1	L3
	b	Find the radius of curvature of the following curve at the points indicted against them \sqrt{x} + \sqrt{y} = \sqrt{a} , (x, y).		CO1	L3
	С	Find the angle between two curves r= $\frac{a}{1+cos\theta}$ and $\frac{b}{1+cos\theta}$	6	CO1	L3
	-1	$r = \frac{b}{1 - \cos\theta}$	_	001	
	d	Find the equation of the evolute of the parabola y²=4ax.	7	CO1	L3
		Using Maclaurin's series expand tanx upto the term containing x ⁵ .	6	CO2	1.0
-	a		6	_	L3
	b	Evauate: $\lim_{x \to \frac{\pi}{2}} sinx^{tanx}$.	0	CO2	L3
	С	If $u=f(x/y, y/z, z/x)$. Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.	6	CO3	L3
	d	Find the extreme values of $x^4 + y^4 - 2(x-y)^2$.	7	CO ₃	L3
3	а	Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{x}} x^{2} + y^{2} dy dx$	6	CO4	L3
	b	Evaluate: $\int_{0}^{\infty} \int_{0}^{x} \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} dz dy dx / \sqrt{1-x^2-y^2-z^2}$ Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$, by changing to polar coordinates.	6	CO ₄	L3
	С	Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$, by changing to polar coordinates.	6	CO ₄	L3
	d	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$, by changing the order of Integration.	7	CO4	L3
		OR			
4	а	Find the rank of the matrix by reducing to echelon form: $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$	6	CO6	L3
	b	For what values of a and b , the system have (i)no solution (ii)unique solution (iii)Infinitely many solution x +y+z =6 x+2y+3z =10 x+2y+az =b.	6	CO6	L3
	С	Solve the following system of equations by Gauss-Jordan method: x +2y-z =-1 3x+8y+2z =28 4x+9y-z =14.	6	CO6	L3
	d	Diagonalize the matrix A= $\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$	7	CO6	L3

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

BS

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 17 / 19

	Model Assignment Questions							
Crs Code:	18MAT11	Sem:	1	Marks:	10	Time:		
Course:	Calculus a	and Linear A	Algebra.					

Note:	lote: Each student to answer 3 assignments. Each assignment carries equal mark.								
SNo	USN	Assignment Description	Marks	СО	Level				
1		Find the surface generated by revolving the cycloid $x=a(\theta-$		CO4	L4				
		$\cos\theta$),y=a(1- $\cos\theta$) about its base, (consider one arc in the 1st quadrant)							
2		Find the length of the arc of the cycloid x=a(t-sint), y=a(1-cost)	5	CO4	L4				
3		Find the area of the surface formed by the revolution of y^2	5	CO4	L4				
		=4ax about its axis , by the arc from the vertex to one end of the latus rectum							
4		Find the area of the loop of the curve $a^2 y^2 = x^2 i$	5	CO4	L4				
5		Find surface area of the solid generated by revolution of	5	CO4	L4				
		$r^2 = a^2 \cos(2\theta)$ about the line θ $\frac{\pi}{2}$							
6		Find the length of the arch of the cycloid x=a(t-sint), y=a(1-cost)	5	CO4	L4				
7		Find the the volume of the solid generated by revolving the cycloid $x=a(\theta-\sin\theta),y=a(1-\cos\theta)$ about its base	5	CO4	L4				

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Calculus and Linear Algebra Mor	nth / Year	Feb /	2018
	Code:	18MAT11 Sem: I Marks: 100 Tim	e:	180 m	nin
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	а		20		
	b				
	С				
		OR			
2	а		20		
	b				
	С				
3	а		20		
	b				
	С				
		OR			
4	a		20		
	b				
	С				
5	a		20		
	b				
	С				
		OR			
6	а		20		
	b				
	С				
7	a		20		
	b				
	С				
		OR			

INS	TITUTEOF	SKIT	Teaching Process	Rev No.	1.0	
KRISHIK		Doc Code:	BS-SKIT.Ph5b1.F02	Date:03		019
186 * 84	NGALORE *	Title:	Course Plan	Page: 18 / 19		
Copyrig	opyright ©2017, cAAS. All rights reserved.					
8	a			20		
	b					
	С					
9	а			20		
	b					
	С					
			OR			
10	а			20		
	b					

2. SEE Important Questions

С

Cour	rse:	Calculus and Linear Algebra Month	/ Year	May /	2018
Crs (Code:	18MAT11 Sem: 1 Marks: 100 Time:	_	180 m	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mo dul e	Qno.	Important Question	Marks	СО	Year
1	1	Using the Maclaurin's series <i>prove that</i> $\sqrt{1+\sin 2x} = 1+x\frac{-(x^2)}{(2)} + \frac{(x^3)}{6} + \frac{x^4}{24}$	20	CO1	2008
	2	Expand $f(x)=\sin(e^x-1)$ in powers of x up to the terms containing x^4		CO1	2010
	3	Find the pedal equation of the curve $r^{m-}a^m(cosm\theta+sinm\theta)$.		CO1	2011
	4	Find the angle of intersection of the curves r=alog θ ,r = $\frac{a}{log\theta}$		CO1	2009
	1	Find the radius of curvature at the point 't' on the curve x= a(t+sint) ,y= a(1-cost).		CO1	2008
2	1	Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x + d^x}{4}\right)^{\frac{1}{x}}$	20	CO2	2007
				CO3	2009
	3	If x+ y+ z=u , y+ z=v,z=uvw show that $J\left(\frac{x,y,z}{u,v,w}\right)$ =uv If $u=\frac{xy}{z}$, $v=\frac{yz}{x}$ and $w\dot{c}\frac{xz}{y}$ find $J\left(\frac{u,v,w}{x,y,z}\right)$		CO3	2010
	4	If u=xlog(xy) where $x^3 + y^3 + 3xy = 1$, find $\frac{dy}{dx}$ and hence find $\frac{du}{dx}$		CO2	2008
	5	Evaluate: i) $\lim_{x \to \frac{\pi}{2}} (2 x tan x - \pi sec x)$		CO2	2011
3	1	Find the area of the surface formed by the revolution of y^2 =4ax about its axis, by the arc from the vertex to one end of the latus rectum	20	CO ₄	2008
	2	Evaluate $\int_{0}^{2} \frac{x^4}{\sqrt{4-x^2}} dx$		CO4	2009
	3	Find the surface generated by revolving the cycloid x=a(θ -cos θ),y=a(1-cos θ) about its base, (consider one arc in the 1st quadrant)		CO4	2007
		Find the the volume of the solid generated by revolving the cycloid x=a(θ-sinθ),y=a(1-cosθ) about its base		CO ₄	2010

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2019
Title:	Course Plan	Page: 19 / 19

CO₄ 2011 Derive then reduction formula for $\int_{0}^{\infty} \sin^{n} x dx$ CO₅ 2008 Solve: $ydy+sin^2(\frac{x}{y}i(xdy-ydx)i0$ Solve: $\frac{dy}{dx}+xsin2y=x^3cos^2y$ 20 4 CO5 2009 Find the orthogonal trajectories of $r^n sinn\theta = a^n$, with a parameter and CO5 2010 Solve: $(y^3-3x^2y)dx-(x^3-3xy^2)dy=0$. CO5 2011 Find the orthogonal trajectories of the cardiods $r=a(1-\cos\theta)$, using the CO₅ 2009 differential equation method Applying Gauss Jordan method solve 2x+3y-z=5, 4x+4y-3z=3, 2x-3y+2z=2 CO6 2009 5 20 CO6 2007 Find all the eigen values for the matrix, A = |-2|6 0 - 2 5Show that the transformation y_1 =2 x_1 -2 x_2 - x_3 , y_2 =-4 x_1 +5 x_2 +3 x_3 , y_3 = CO6 2007 $x_1 - x_2 - x_3$ is regular and find the inverse transformation CO6 2008 4 8 -62 Diagonalize the matrix, A=|-6|7 -42 -43 Apply Gauss-elimination method to solve the following equations: CO6 2009 x-2y+3z=2; 3x-y+4z=4; 2x+y-2z=5